3.231 \(\int \frac {\tanh ^{-1}(a x)}{x (1-a^2 x^2)} \, dx\)

Optimal. Leaf size=45 \[ -\frac {1}{2} \text {Li}_2\left (\frac {2}{a x+1}-1\right )+\frac {1}{2} \tanh ^{-1}(a x)^2+\log \left (2-\frac {2}{a x+1}\right ) \tanh ^{-1}(a x) \]

[Out]

1/2*arctanh(a*x)^2+arctanh(a*x)*ln(2-2/(a*x+1))-1/2*polylog(2,-1+2/(a*x+1))

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {5988, 5932, 2447} \[ -\frac {1}{2} \text {PolyLog}\left (2,\frac {2}{a x+1}-1\right )+\frac {1}{2} \tanh ^{-1}(a x)^2+\log \left (2-\frac {2}{a x+1}\right ) \tanh ^{-1}(a x) \]

Antiderivative was successfully verified.

[In]

Int[ArcTanh[a*x]/(x*(1 - a^2*x^2)),x]

[Out]

ArcTanh[a*x]^2/2 + ArcTanh[a*x]*Log[2 - 2/(1 + a*x)] - PolyLog[2, -1 + 2/(1 + a*x)]/2

Rule 2447

Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[(Pq^m*(1 - u))/D[u, x]]}, Simp[C*PolyLog[2, 1 - u
], x] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponen
ts[u, x][[2]], Expon[Pq, x]]

Rule 5932

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[((a + b*ArcTanh[c*
x])^p*Log[2 - 2/(1 + (e*x)/d)])/d, x] - Dist[(b*c*p)/d, Int[((a + b*ArcTanh[c*x])^(p - 1)*Log[2 - 2/(1 + (e*x)
/d)])/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 5988

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*d*(p + 1)), x] + Dist[1/d, Int[(a + b*ArcTanh[c*x])^p/(x*(1 + c*x)), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(a x)}{x \left (1-a^2 x^2\right )} \, dx &=\frac {1}{2} \tanh ^{-1}(a x)^2+\int \frac {\tanh ^{-1}(a x)}{x (1+a x)} \, dx\\ &=\frac {1}{2} \tanh ^{-1}(a x)^2+\tanh ^{-1}(a x) \log \left (2-\frac {2}{1+a x}\right )-a \int \frac {\log \left (2-\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx\\ &=\frac {1}{2} \tanh ^{-1}(a x)^2+\tanh ^{-1}(a x) \log \left (2-\frac {2}{1+a x}\right )-\frac {1}{2} \text {Li}_2\left (-1+\frac {2}{1+a x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 42, normalized size = 0.93 \[ \frac {1}{2} \left (\tanh ^{-1}(a x) \left (\tanh ^{-1}(a x)+2 \log \left (1-e^{-2 \tanh ^{-1}(a x)}\right )\right )-\text {Li}_2\left (e^{-2 \tanh ^{-1}(a x)}\right )\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[ArcTanh[a*x]/(x*(1 - a^2*x^2)),x]

[Out]

(ArcTanh[a*x]*(ArcTanh[a*x] + 2*Log[1 - E^(-2*ArcTanh[a*x])]) - PolyLog[2, E^(-2*ArcTanh[a*x])])/2

________________________________________________________________________________________

fricas [F]  time = 1.51, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\operatorname {artanh}\left (a x\right )}{a^{2} x^{3} - x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)/x/(-a^2*x^2+1),x, algorithm="fricas")

[Out]

integral(-arctanh(a*x)/(a^2*x^3 - x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {\operatorname {artanh}\left (a x\right )}{{\left (a^{2} x^{2} - 1\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)/x/(-a^2*x^2+1),x, algorithm="giac")

[Out]

integrate(-arctanh(a*x)/((a^2*x^2 - 1)*x), x)

________________________________________________________________________________________

maple [B]  time = 0.06, size = 130, normalized size = 2.89 \[ \arctanh \left (a x \right ) \ln \left (a x \right )-\frac {\arctanh \left (a x \right ) \ln \left (a x -1\right )}{2}-\frac {\arctanh \left (a x \right ) \ln \left (a x +1\right )}{2}-\frac {\ln \left (a x -1\right )^{2}}{8}+\frac {\dilog \left (\frac {1}{2}+\frac {a x}{2}\right )}{2}+\frac {\ln \left (a x -1\right ) \ln \left (\frac {1}{2}+\frac {a x}{2}\right )}{4}+\frac {\ln \left (a x +1\right )^{2}}{8}-\frac {\left (\ln \left (a x +1\right )-\ln \left (\frac {1}{2}+\frac {a x}{2}\right )\right ) \ln \left (-\frac {a x}{2}+\frac {1}{2}\right )}{4}-\frac {\dilog \left (a x \right )}{2}-\frac {\dilog \left (a x +1\right )}{2}-\frac {\ln \left (a x \right ) \ln \left (a x +1\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(a*x)/x/(-a^2*x^2+1),x)

[Out]

arctanh(a*x)*ln(a*x)-1/2*arctanh(a*x)*ln(a*x-1)-1/2*arctanh(a*x)*ln(a*x+1)-1/8*ln(a*x-1)^2+1/2*dilog(1/2+1/2*a
*x)+1/4*ln(a*x-1)*ln(1/2+1/2*a*x)+1/8*ln(a*x+1)^2-1/4*(ln(a*x+1)-ln(1/2+1/2*a*x))*ln(-1/2*a*x+1/2)-1/2*dilog(a
*x)-1/2*dilog(a*x+1)-1/2*ln(a*x)*ln(a*x+1)

________________________________________________________________________________________

maxima [B]  time = 0.33, size = 132, normalized size = 2.93 \[ \frac {1}{8} \, a {\left (\frac {\log \left (a x + 1\right )^{2} - 2 \, \log \left (a x + 1\right ) \log \left (a x - 1\right ) - \log \left (a x - 1\right )^{2}}{a} + \frac {4 \, {\left (\log \left (a x - 1\right ) \log \left (\frac {1}{2} \, a x + \frac {1}{2}\right ) + {\rm Li}_2\left (-\frac {1}{2} \, a x + \frac {1}{2}\right )\right )}}{a} - \frac {4 \, {\left (\log \left (a x + 1\right ) \log \relax (x) + {\rm Li}_2\left (-a x\right )\right )}}{a} + \frac {4 \, {\left (\log \left (-a x + 1\right ) \log \relax (x) + {\rm Li}_2\left (a x\right )\right )}}{a}\right )} - \frac {1}{2} \, {\left (\log \left (a^{2} x^{2} - 1\right ) - \log \left (x^{2}\right )\right )} \operatorname {artanh}\left (a x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)/x/(-a^2*x^2+1),x, algorithm="maxima")

[Out]

1/8*a*((log(a*x + 1)^2 - 2*log(a*x + 1)*log(a*x - 1) - log(a*x - 1)^2)/a + 4*(log(a*x - 1)*log(1/2*a*x + 1/2)
+ dilog(-1/2*a*x + 1/2))/a - 4*(log(a*x + 1)*log(x) + dilog(-a*x))/a + 4*(log(-a*x + 1)*log(x) + dilog(a*x))/a
) - 1/2*(log(a^2*x^2 - 1) - log(x^2))*arctanh(a*x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ -\int \frac {\mathrm {atanh}\left (a\,x\right )}{x\,\left (a^2\,x^2-1\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-atanh(a*x)/(x*(a^2*x^2 - 1)),x)

[Out]

-int(atanh(a*x)/(x*(a^2*x^2 - 1)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \frac {\operatorname {atanh}{\left (a x \right )}}{a^{2} x^{3} - x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(a*x)/x/(-a**2*x**2+1),x)

[Out]

-Integral(atanh(a*x)/(a**2*x**3 - x), x)

________________________________________________________________________________________